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A nonlinear evolution equation that describes the propagation of a premixed flame
in a closed tube has been derived from the general conservation equations. What
distinguishes it from other similar equations is a memory term whose origin is in
the vorticity production at the flame front. The two important parameters in this
equation are the tube’s aspect ratio and the Markstein parameter. A linear stability
analysis indicates that when the Markstein parameter α is above a critical value αc the
planar flame is the stable equilibrium solution. For α below αc the planar flame is no
longer stable and there is a band of growing modes. Numerical solutions of the full
nonlinear equation confirm this conclusion. Starting with random initial conditions
the results indicate that, after a short transient, a flat flame develops when α > αc and
it remains flat until it reaches the end of the tube. When α < αc, on the other hand,
stable curved flames may develop down the tube. Depending on the initial conditions
the flame assumes either a cellular structure, characterized by a finite number of
cells convex towards the unburned gas, or a tulip shape characterized by a sharp
indentation at the centre of the tube pointing toward the burned gases. In particular,
if the initial conditions are chosen so as to simulate the elongated finger-like flame
that evolves from an ignition source, a tulip flame evolves downstream. In accord with
experimental observations the tulip shape forms only after the flame has travelled a
certain distance down the tube, it does not form in short tubes and its formation
depends on the mixture composition. While the initial deformation of the flame
front is a direct result of the hydrodynamic instability, the actual formation of the
tulip flame results from the vortical motion created in the burned gas which is a
consequence of the vorticity produced at the flame front.

1. Introduction
Studies of premixed flames in closed tubes are of fundamental interest for the insight

they provide into the burning process and into the interaction between the flame and
the underlying flow field. They have also significant technological relevance: flame
propagation in closed vessels has direct application to internal combustion engine
processes and it represents the initial and transition stages in the development of a
detonation wave.

Although in the absence of the gravitational force a planar flame front is always a
possible solution of the conservation equations, it is seldom observed in experiments.
The hydrodynamic instability (Darrieus 1938; Landau 1944) does not permit the
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existence of flames that are too flat and stable curved fronts are generated instead.
Premixed flames propagating in open tubes are generally convex toward the unburned
gas (Uberoi 1959). It has been argued (Zel’dovich et al. 1980) that this configuration
is much more stable than planar fronts. Experimental observations of flames propa-
gating in closed tubes, on the other hand, reveal interesting and unexpected features.
Following ignition the flame grows from a hemisphere surrounding the ignition source
to a nearly flat shape extending over the cross-section of the tube. It then undergoes
an inversion: the leading edge of the flame becomes near the walls and the flame
trails behind at the centre of the tube forming a cusp that points toward the burned
gases. This flame shape is referred to as a tulip flame in the literature. A tulip flame
also forms in a tube closed at the ignition end and open at the other end.

An extensive study of the tulip flame phenomenon that includes photographs of
the inversion process was first reported by Ellis (1928). This work and the subsequent
studies by Guénoche (1964) revealed that a tulip flame forms only after the flame
has travelled a certain distance down the tube and that it does not form in short
tubes (of aspect ratio less than two). It was also found that the formation of the
tulip flame depends on the composition of the combustible mixture and on the initial
pressure in the tube. Another interesting observation reported by Guénoche is that
in very long tubes, i.e. of aspect ratio ∼ 20, the inversion of the flame front can
reverse itself. The centre part of the tulip flame, which is pointing toward the burned
gas, starts accelerating and overtakes the outer edges. The flame shape is now again
convex towards the unburned gases. This process repeats itself a number of times
with the flame undergoing a series of inversions until it reaches the end of the tube.
Finally it should be pointed out that there have been some recent experiments (Starke
& Roth 1986; Dunn-Rankine, Barr & Sawyer 1986; Clanet & Searby 1996) on this
phenomenon which have provided more detailed information on the flow and pressure
fields in the tube.

There have been also a number of numerical simulations (Rotman & Oppenheim
1986; N’konga et al. 1992; Gonzalez, Borghi & Saouab 1992) aimed at reproducing
the tulip flame and possibly clarifying the physical mechanisms responsible for its
formation. Based on these studies, and on the experimental work referred to earlier,
various possible explanations have been suggested. These include: the cooling of
the burned gas which would cause expansion of the fresh mixture (Ellis 1928), the
interaction between the flame and pressure waves (Guénoche 1964), viscous drag
at the walls (Lewis & von Elbe 1987), large circulation induced in the unburned
gas (Dunn-Rankine et al. 1986; Rotman & Oppenheim 1986) and the Darrieus–
Landau instability (Gonzales at al. 1992; N’konga at al. 1992). However, the actual
cause of the formation of tulip flames has not been conclusively determined. A
more fundamental approach has been recently undertaken by Matalon & McGreevy
(1994) who examined the stability of planar flame fronts propagating in closed tubes.
The linear analysis presented in that paper identifies conditions for the onset of an
instability which are in general agreement with the experimental records. However,
as a result of the linearization invoked, the analysis does not uniquely determine the
shape of the flame that develops beyond the instability threshold and therefore does
not completely describe the inversion process leading to the tulip flame.

The mathematical model adopted in the present study is similar to that used by
Matalon & McGreevy (1994). The flame is treated as a surface of density discontinuity
in an otherwise inviscid isentropic flow. The flame is characterized by its temperature
and by the rate at which it consumes the reactants, namely the burning rate. The flame
temperature determines the density jump across the discontinuity while the burning
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rate determines the propagation speed or, equivalently, the shape and location of the
discontinuity. For curved flames the resulting free boundary problem must, in general,
be solved numerically. A simplification is obtained if one treats the dimensionless heat
release q as a perturbation parameter. This approximation enables one to explicitly
determine the flow field on either side of the flame so that the problem reduces to a
single nonlinear integro-differential equation for the position of the flame front. This
equation, when expressed in terms of the distortion ϕ(y, t) from a flat flame, was first
presented in Matalon (1995). It takes the form

1

q

∂ϕ

∂t
= α

∂2ϕ

∂y2
+

1

2

(
∂ϕ

∂y

)2

− 1

L
ϕ+J(ϕ) (1.1)

where L is the tube’s aspect ratio (length/width), α is the Markstein parameter and
the exact form of the linear integral operator J(·) is given below in equation (4.8).
An important element of (1.1) is the memory effect contained in J(ϕ). This effect
has its origin in the vorticity production at the flame front which turns out to be
an essential ingredient for properly describing the inversion that characterizes the
formation of tulip flames. Although the limit of small heat release does not fully
characterize combustion processes, it is nevertheless one that was found extremely
useful in a variety of theoretical studies (see for example Buckmaster & Ludford
1982). It appears, in this case as well, that this approximation retains the essential
physics of the problem as is evident from the numerical results of (1.1) which are in
complete qualitative agreement with experimental observations.

When the Markstein parameter α exceeds a critical value αc ≈ 0.05L, the planar
front is absolutely stable. For 0 < α < αc, there is a range of wavenumbers for
which, in the finite time available, small disturbances superimposed on a flat flame
eventually grow to a magnitude much larger than their initial size. Disturbances of
longer wavelength are unable to grow to a significant size while those of shorter
wavelength are stabilized by diffusion. Nonlinear effects limit the growth and stable
curved flames, that propagate at a nearly constant speed, develop down the tube. The
flame assumes either a cellular shape, characterized by a finite number of cells convex
toward the unburned gas, or a tulip shape whose characteristics were described above.
The new structure is very sensitive to the initial data. In particular, when starting with
initial conditions that simulate the elongated finger-like flame that evolves from an
ignition point source, a tulip flame results. The initial deformation of the flame front
is a direct consequence of the hydrodynamic instability as is evident from the linear
stability analysis of (1.1) discussed in §5; see also the more general linear analysis
of Matalon & McGreevy (1994). The following events leading to the tulip flame
are a consequence of nonlinearities. The curved flame generates vorticity which, due
to the confinement, is accumulated in the burned gas behind the flame front. The
vortical motion thus created, and the sense of the circulation in the flow field, depend
strongly on the initial conditions. From the elongated finger-like flame, a pair of
vortices is created in the burned gas with a circulation that tends to advect the centre
part of the flame upstream, thus creating the peculiar shape referred to as a the tulip
flame.

The evolution equation (1.1) can be simplified when the tube is infinite in extent,
that is when the flame is propagating in a tube open at both ends. In this limit the term
J(ϕ) simplifies significantly and one recovers the integro-differential equation derived
by Sivashinsky (1977) for freely propagating flames. Sivashinsky’s equation contains
no memory effect and is apparently unable to describe the inversion phenomenon that
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characterizes tulip flames. It was argued (Dold & Joulin 1995) that the equation that
results by adding a second-order time derivative to Sivashinsky’s equation is capable of
describing the inversion phenomenon associated with tulip flames. This new equation
was obtained by synthesizing Sivashinsky’s equation with the linear dispersion relation
of Darrieus and Landau which describes the growth of disturbances resulting from
the hydrodynamic instability. Our equation (1.1), which has been derived from first
principles, shows that for long but finite tubes the reminiscent of the memory effects
include the second-order time derivative that they have suggested. There are, however,
additional terms of the same order of magnitude that must also be retained in the
equation, for consistency.

The paper is organized as follows. In §2 the governing equations and the model
treating the flame as a surface of discontinuity are presented. Planar flames are
described in §3. The derivation of the evolution equation is given in §4, followed
by a linear stability analysis of planar fronts in §5 and numerical results of the full
nonlinear equation in §6. Simplifications of the evolution equation for long tubes are
discussed in §7.

2. Governing equations
A premixed combustible mixture of density ρ0, temperature T0 and pressure p0

occupies the volume of a closed tube. The mixture consists of a deficient reactant
with an initial mass fraction Y0 and a molecular weight W . When ignited, at the left
end of the tube say, a flame propagates towards its right end. The present discussion
is concerned with the post-ignition events. It is therefore assumed that at time t = 0
a flame has already been established at the left end of the tube, and our objective
is to determine its evolution for t > 0. The flow is assumed to be inviscid; that
is the boundary layers that develop in the unburned gas as a result of the flame
propagation remain thin and have no effect on the flame shape. The combustion
mixture is considered an ideal gas with constant material properties. Finally, the
combustion process is assumed to occur under adiabatic conditions.

The governing equations, expressing conservation of the mixture’s mass, momentum
and energy and a mass balance for the deficient reactant are given by

Dρ

Dt
+ ρ∇ · v = 0, (2.1a)

ρ
Dv

Dt
= −∇p, (2.1b)

ρcp
DT

Dt
− ∇ · λ∇T =

Dp

Dt
+ QB

(
ρY

W

)
e−E/R

oT , (2.1c)

ρ
DY

Dt
− ∇ · ρD∇Y = −B

(
ρY

W

)
e−E/R

oT , (2.1d)

where v, p, ρ, Y and T are the velocity, pressure, density, mass fraction and temperature
respectively, and D/Dt ≡ ∂/∂t+ v · ∇ is the convective derivative. The specific heats
of the mixture, cp and cv , are assumed constant and so is their ratio γ = cp/cv .
The thermal conductivity λ and the molecular diffusivity associated with the deficient
reactant in the mixture D are, in general, temperature dependent. The chemical
activity has been modelled by a one-step, irreversible, overall chemical reaction of
Arrhenius type with an activation energy E and a pre-exponential factor B. The
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Figure 1. Schematic of a flame propagating in a tube.

total heat of combustion is denoted by Q and the universal gas constant by Ro. The
equation of state takes the form

p = ρRoT/W̄ (2.2)

with W̄ an average molecular weight. Finally, the boundary conditions along the
walls of the tube are

n̂ · v = n̂ · ∇T = n̂ · ∇Y = 0 (2.3)

where n̂ is a unit vector normal to the walls.
Based on the following observations the governing equations (2.1a)–(2.1d) can be

significantly simplified (for more details, see Matalon 1995).
(i) The laminar flame speed, v0 ∼ 50–100 cm s−1, is much smaller then the

speed of sound. Hence the representative Mach number M ≡ v0/(γp0/ρ0)
1/2 � 1.

Acoustic disturbances therefore propagate relatively fast and the pressure is almost
instantaneously equalized throughout the tube. The pressure can therefore be ex-
pressed as

p(x, t) = P (t) + γM2p′(x, t) + · · ·
where P (t) represents the mean pressure level and p′ accounts for the small spatial
variations. Note that the small pressure gradients, M2∇p′, are needed to balance the
small momentum changes in equation (2.1b).

(ii) The diffusion length `d = λo/ρ0cpv0 ∼ 10−2 cm, is typically much smaller than
a characteristic dimension of the tube, for example the width of the tube `. Hence
the parameter `d/`� 1. The O(`d/`) diffusion and reaction terms in (2.1c), (2.1d) are
therefore negligibly small except in the thin flame zone separating the burned from
the unburned gases. Viewed on the length scale ` the thin flame may be treated as
a surface of density discontinuity which propagates according to some rule that is
determined from the analysis of its internal structure.

We thus obtain, after some manipulations,

∇ · v = − 1

γP

dP

dt
, (2.4a)

ρ
Dv

Dt
= −∇p′, (2.4b)

D

Dt

(
ρ−1P 1/γ

)
= 0, (2.4c)

ρT = P . (2.4d)

In writing these equations we have introduced dimensionless variables as follows. The
width of the tube, `, has been used as a unit for length, the laminar flame speed, v0,
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as a unit for the velocity, `/v0 as a unit for time and the initial state of the fresh
mixture T0, p0, ρ0, Y0 as units for the temperature, pressure, density and reactant mass
fraction, respectively.

If the flame front is described by F(x, t) = 0, with n = −∇F/|∇F | a unit normal
pointing toward the burned gas (see figure 1), the Rankine–Hugoniot jump relations
across the flame are

[ρ(v · n− Vf)] = 0, (2.5a)

[p′ + ρ(v · n− Vf)(v · n)] = 0, (2.5b)

[v × n] = 0, (2.5c)

[T ] = q. (2.5d)

Here Vf = |∇F |−1(∂F/∂t) is the normal velocity of the front, q = QY0/cpT0 is the
heat release parameter and [·] denotes the jump in the quantity defined as its value
in the burned side minus that in the unburned side.

Equation (2.4c) implies that the entropy ∼ lnE ≡ ln(ρ−1P 1/γ) is conserved along
particle paths. Since the state of the fresh mixture is initially uniform, the entropy
of the unburned gas remains constant at all times. Consequently, the temperature
and density remain uniform throughout the unburned gas region and rise in time
according to the law of adiabatic compression; hence

T = P (γ−1)/γ, ρ = P 1/γ for F(x, t) > 0. (2.6)

By applying the jump relationship (2.5d), the flame temperature can be determined as

Tf = Ta + P (γ−1)/γ − 1 (2.7)

where Ta = 1+q is the adiabatic flame temperature, i.e. the temperature of a premixed
flame propagating freely under isobaric conditions. The entropy of the burned gas at
the flame front is therefore

Ef = 1 + qP−(γ−1)/γ. (2.8)

Note that the flame temperature is continuously increasing as the pressure builds up
in the tube. On the other hand Ef decreases in time. Hence the gas elements that
burn first have a larger entropy which implies that the highest temperature in the
tube is not necessarily reached at the flame front but rather in the neighbourhood of
the ignition point. Consequently temperature (or entropy) gradients develop in the
burned gas region; for more details see Matalon (1995).

In the burned gas region one finds from (2.4c), (2.4d) that

T = P (γ−1)/γ E(x, t), ρ = P 1/γ /E(x, t) for F(x, t) < 0 (2.9)

where the entropy function E is determined by solving DE/Dt = 0 subject to E = Ef
at the flame front. To complete the system one needs equations for P (t) and F(x, t);
these depend on the internal structure of the flame and will be discussed next.

It is more convenient to write an expression for the mass burning rate,

M ≡ ρ(v · n− Vf)|flame ,

instead of an equation for the flame position F(x, t). For a premixed flame propagating
in free space, the analysis of the flame structure (Matalon & Matkowsky 1982) yields

M = 1− αq {Vf∇ · n− n · ∇× (v × n)} (2.10)

where α = O(`d/`) is the Markstein parameter and the expression in the curly brackets
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constitutes the flame stretch (Matalon 1983). Hence the burning rate depends on the
curvature of the flame front and on non-uniformities in the incoming flow field. This
expression has been derived for unconfined flames and will be adopted here. We note
that the Markstein parameter α depends on the mixture composition through the
Lewis number Le = λ0/ρ0cpD0 (the ratio of the thermal to molecular diffusivities).
For a planar flame front (2.10) reduces to M = 1 (i.e. ρ0v0 in dimensional form).
Although as a result of pressure buildup the burning velocity v0 of a planar flame
may also increase in time (McGreevy & Matalon 1992), we have neglected these
variations in the present discussion.

An equation for the mean pressure P can be obtained by combining (2.1a) and
(2.1c) and integrating the resulting equation throughout the volume of the tube. One
finds

dP

dt
=
γq

L

∫
Af

M dAf (2.11)

where Af is the flame surface area and L is the dimensionless tube’s length (or the
tube’s aspect ratio). If the reactants are totally consumed during the process, the
final pressure Pe is obtained independent of the flame dynamics and is a property
of the given mixture. Forming the enthalpy equation by adding (2.1c) to (2.1d) after
multiplying the latter by q, then integrating this equation throughout the volume of
the tube, one finds that Pe = 1 + γq. The pressure level in the vessel is determined
by solving (2.11) subject to P = 1 at t = 0. The condition P = Pe then serves to
determine the total time that it takes for the flame to reach the end of the tube.

3. Planar flames
Let the flame front be described by x = xf(t), the axial velocity v = ui is given by

u =

 −(Ṗ /γP )x for 0 < x < xf

(Ṗ /γP )(L− x) for xf < x < L

indicating that the fresh mixture is compressed towards the far right end of the tube
while the burned gas moves away toward the ignition end. The dot over P represents
differentiation with respect to time. From (2.5a) one finds that

xf(t) = L

(
1− Pe − P

Pe − 1
P−1/γ

)
where the pressure level increases linearly according to

P = 1 + γqt/L. (3.1)

This also implies that the total time for the flame to travel from one end of the tube
to the other is L. The entropy function in the burned gas is given by E = ψ(xP 1/γ)
where the function ψ(η) is determined implicitly from the relations

ψ(η) = 1 + qP−(γ−1)/γ,

η = xfP
1/γ.

Note that ψ is a decreasing function that takes the value 1 + q at zero and reaches

1 + qP
−(γ−1)/γ
e as the independent variable approaches LP

1/γ
e . Finally, the pressure

deviations from the mean, p′(x, t), can be calculated from (2.4b) and (2.5b).
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For future reference we note that these results can be simplified for small q as
follows. The axial velocity and the pressure field are respectively given by

u ∼

 −qx/L+ γq2xt/L2 + · · · for x < xf

q(1− x/L)− γq2(1− x/L)(t/L) + · · · for x > xf,

p′ ∼

 −q − q
2(γ + 1)(x2/2L2) + · · · for x < xf

−q2 {(γ + 1)(x/2L− 1)(x/L) + (1 + 2γ)(t/L)} · · · for x > xf,

with the flame position expressed as

xf ∼ t
{

1 + q(1− t/L)− 1
2
q2(γ + 1)(1− t/L)t/L+ · · ·

}
.

The function ψ(η) has the explicit form

ψ(η) ∼ 1 + q − q2(γ − 1)η/L+ · · ·
so that the density and temperature are given by

ρ ∼

 1− q(1− t/L) + q2
{

1− t/L+ (γ − 1)x/L− (γ − 1)(t2/2L2) + · · ·
}

for x < xf

1 + qt/L− q2(γ − 1)(t2/2L2) + · · · for x > xf,

T ∼

 1 + q {1 + (γ − 1)t/L}+ q2(γ − 1)
{

(t− x)/L− t2/2L2
}

+ · · · for x < xf

1 + q(γ − 1)t/L− q2(γ − 1)(t2/2L2) + · · · for x > xf.

Note that these expansions, despite being valid for small q, exhibit all the essential
characteristics of the exact solution.

4. The evolution equation
The mathematical problem describing non-planar flames is indeed formidable. It

consists of a coupled system of time-dependent nonlinear partial differential equations
further complicated by the existence of a free moving boundary. In this form it is
only amenable to numerical simulations. An alternative approach is to consider an
asymptotic limit and derive a single equation that describes the evolution of the
flame front. The limit considered here is q � 1. Although this limit does not fully
characterize combustion processes it is nevertheless one that was found extremely
useful in a variety of theoretical studies, as discussed in the introduction.

Restricting attention to a two-dimensional flow, we introduce the following expan-
sions:

u = ū(x, t) + q2U(x, y, t) + · · · ,
v = q2V (x, y, t) + · · · ,
p′ = p̄′(x, t) + q2Π(x, y, t) + · · · ,

 (4.1)

with the flame front position expressed in the form

x = x̄f(t) + qϕ(y, t) + · · ·
Here, the overbar denotes the planar solution described in § 3. Upon substituting in
equation (2.11) one finds that the mean pressure may be expressed as

P = 1 + γqt/L+ O(q3).



Premixed flames in closed tubes 339

The governing equations (2.4a)–(2.4b) reduce to

∂U

∂x
+
∂V

∂y
= 0, (4.2a)

∂U

∂t
= −∂Π

∂x
,

∂V

∂t
= −∂Π

∂y
, (4.2b)

and the jump relations (2.5a)–(2.5c), when expressed at the mean flame position x = t,
simplify to

[U] = [Π] = 0, [V ] =
∂ϕ

∂y
. (4.3)

A curved flame front is therefore equivalent to a flat vortex sheet whose non-uniform
strength is given by the last condition in (4.3). The equation for the burning rate
(2.10) becomes

∂ϕ

∂t
= q

{
α
∂2ϕ

∂y2
+

1

2
(
∂ϕ

∂y
)2 − 1

L
ϕ+U∗

}
(4.4)

where U∗ = U(x = t, y, t). Note that in the present approximation the most significant
contribution to flame stretch is the flame front curvature; flow non-uniformities have
a secondary effect on the propagation velocity. The small parameter q is retained
in equation (4.4) because secondary effects appear to be of physical significance and
because the complete combustion process evolves over various time scales. Rather
than rescaling time repeatedly, it is preferable for numerical computation to keep the
equation in this form and use a relatively small q for consistency. The boundary and
initial conditions will be discussed in due course.

It is useful to introduce the vorticity vector which, following (4.1), is expanded as

∇× v = q2$ k + · · · .

According to Helmholtz theorem the flow in the unburned gas is irrotational, so that
$ = 0 for t < x < L. The same conclusion cannot be drawn for the flow in the
burned gas because vorticity is produced at the curved flame front. Since equations
(4.2b) imply that ∂$/∂t = 0, one concludes that $ = $(x, y) for 0 < x < t. We note
parenthetically that there is another source of vorticity which results from the spatial
non-uniformities in the density and pressure fields in the burned gas region. This
gives rise to a non-zero baroclinic vector (Matalon 1995) which is negligibly small
within the present approximation.

The system of equations (4.2a),(4.2b) can be solved using a Fourier transform in

y. If f̃(x, k, t) denotes the Fourier transform of the function f(x, y, t) one finds, after
satisfying the jump relationships (4.3) and the boundary conditions U = 0 at x = 0
and L,

Ũ =


k B(k, t) sinh kx + k2

∫ x

0

cosh[k(x− ξ)] ϕ̃(k, ξ) dξ for x < t

−k C(k, t) sinh[k(L− x)] for x > t,

Ṽ = ik


B(k, t) cosh kx + ϕ̃(k, x) + k

∫ x

0

sinh[k(x− ξ)] ϕ̃(k, ξ) dξ for x < t

C(k, t) cosh[k(L− x)] for x > t,
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where

B(k, t) = −k
∫ t

0

cosh[k(L− τ)]
sinh kL

ϕ̃(k, τ) dτ,

C(k, t) = −k
∫ t

0

cosh kτ

sinh kL
ϕ̃(k, τ) dτ.

Consequently

$̃ =

 ik(∂ϕ̃/∂t)|t=x for 0 < x < t

0 for t < x < L.
(4.5)

Thus, at the flame front,

Ũ∗(k, t) =
k2 sinh[k(L− t)]

sinh kL

∫ t

0

cosh kτ ϕ̃(k, τ) dτ. (4.6)

Equation (4.4) now yields the evolution equation

1

q

∂ϕ

∂t
= α

∂2ϕ

∂y2
+

1

2

(
∂ϕ

∂y

)2

− 1

L
ϕ+J(ϕ), (4.7)

where the linear operator J is defined such that

J(ϕ) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

[∫ t

0

G(k, t; τ)ϕ(η, τ) dτ

]
eik(y−η) dk dη (4.8)

with the kernel G(k, t; τ) given by

G(k, t; τ) =
k2 sinh[k(L− t)] cosh kτ

sinh kL
.

This equation must be supplemented with boundary conditions along the side walls
of the tube and an initial shape at t = 0. The discussion of the boundary conditions
will be postponed until needed.

An important aspect of the evolution equation (4.7) is the memory effect contained
in J(ϕ). To understand its physical significance we integrate (4.8) by parts with
respect to t and find that J(ϕ) = J1(ϕ) - J2(ϕ) where

J1(ϕ) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

k sinh[k(L− t)]
sinh kL

sinh kt ϕ(η, t) eik(y−η) dk dη (4.9a)

J2(ϕ) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

k sinh[k(L− t)]
sinh kL

[∫ t

0

sinh kτ
∂ϕ

∂τ
dτ

]
eik(y−η) dk dη. (4.9b)

These two terms correspond to the potential and rotational contributions to the
flow field, respectively. In particular, the memory term in J2(ϕ) represents the
accumulated effect of the vorticity production at the flame (see (4.5)). There have
been theoretical studies that assume a potential flow throughout the combustion field.
Our result demonstrates that this ad hoc approach may exclude important dynamical
behaviours. For example, unlike equation (4.7), a potential flow model is unable to
describe the flame inversion observed during the development of a tulip flame. Finally,
we point out that for infinitely long tubes, equation (4.7) reduces to that derived by
Sivashinsky (1977) for freely propagating flames, as discussed in §7.



Premixed flames in closed tubes 341

0.5

0.4

0.3

0.2

0.1

0 0.2 0.4 0.6 0.8 1.0

t/L

K = 1

3

5
10

50

Figure 2. The dependence of the second term in the expression for A1 versus t/L, for several
values of the wavenumber K .

5. Linear analysis
Consider small disturbances superimposed to the planar flame front, ϕ = 0, of the

form ϕ = A(t)eiky with k the wavenumber. After linearization equation (4.7) reduces
to

dA

dt
+ q

(
1

L
+ αk2

)
A =

qk2 sinh[k(L− t)]
sinh(kL)

∫ t

0

cosh(kτ)A(τ) dτ.

We now seek an expansion of the form

A = A0 + qA1 + q2A2 + · · ·

where A0 is a constant determined by the initial condition. Consequently

1

A0

dA1

dt
= −

(
1

L
+ αk2

)
+
k sinh[k(L− t)] sinh kt

sinh kL

which, when solved subject to A1(0) = 0, yields

A1 = A0

{(
k

2
coth kL− 1

L
− αk2

)
t− 1

4

(
1 +

sinh [k(2t− L)]

sinh kL

)}
. (5.1)

We observe that when α < 0, there are always values of k for which Ȧ1(0) > 0;
the planar flame in this case is considered unstable. But when α > 0 we find that
Ȧ1(0) < 0 for all k, so that initially disturbances of all wavelengths are damped.
An instability may be associated with the development that follows thereafter if A1

changes sign. In the following, a mode of wavenumber k will be considered unstable
if for some 0 < t < L the amplitude A1(t) becomes positive. The time for the onset
of instability, t = t∗ say, is obtained by setting A1(t

∗) = 0.
In figure 2 the second term on the right-hand side of (5.1) is plotted as a function

of t/L for several values of K = kL. Since the first term varies linearly with t/L, a
necessary condition for instability is that the slope m = (K/2) cothK−1− (α/L)K2 of
this line exceeds 1/4. This implies that for instability α/L must be sufficiently small.
Since as K increases cothK approaches 1 rapidly, m(K) ' K/2− 1− αK2/L, and the
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Figure 3. The amplitude A1 as a function of time, t/L, for several values of the wavenumber K;
calculated for α = 0.046.

necessary condition for instability is approximately

α

L
< 0.05. (5.2)

The unstable modes are then restricted to

1

4α

[
1− (1− 20α/L)1/2

]
< k <

1

4α

[
1 + (1− 20α/L)1/2

]
. (5.3)

These approximate expressions are found to be reasonably good when compared
to the exact conditions calculated numerically. Finally we point out that the lower
bound on k should be further limited by the width of the tube.

It is well known that the density decrease across the flame front gives rise to a
hydrodynamic instability (Darrieus 1938; Landau 1944). In closed tubes the limitation
imposed by the finite width of the tube and by the finite duration of the process does
not allow the long-wave disturbances to develop significantly. The growing modes
are therefore limited to disturbances of wavenumber k > kmin. Diffusional thermal
effects, on the other hand, play an important role primarily on the short-wavelength
disturbances. Depending on the Markstein parameter α, or more specifically on
the Lewis number associated with the deficient reactant in the mixture, diffusional–
thermal effects have either stabilizing or destabilizing influences. For α < 0 they are
destabilizing so that all disturbances with k > kmin grow; for α > 0 they are stabilizing
so that the growing modes are restricted to those with wavenumber kmin < k < kmax.
There is therefore a range of unstable modes when α > 0, given by (5.3), which
disappears as α→ 0.05L.

In figure 3 we have plotted the amplitude A1 as a function of time for a range
of wavenumbers and for α = 0.046L. We observe that the short- as well as the
long-wavelength disturbances are damped. Instabilities are confined to moderate
wavelength disturbances, or more precisely disturbances with wavenumber k approxi-
mately in the range 2.64 < kL < 8.22. These results are in qualitative agreement with
the linear theory of Matalon & McGreevy (1994) which was based on the complete
hydrodynamical model, i.e. without recourse to the assumption of small q.
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6. Numerical simulations – finite length tubes
For prescribed initial conditions, ϕ(y, 0) = ϕ0(y), the evolution equation (4.7) must

be solved for 0 < t 6 L in the domain 0 6 x 6 L, −1 6 y 6 1. We require
the solution to be symmetric with respect to y = 0 and to satisfy the requirement
∂ϕ/∂y = 0 along the walls of the tube. The last requirement is a direct consequence
of the no-penetration condition V = 0, and is consistent with the assumption of
thermally insulating walls. The problem has been solved numerically using a spectral
method.

An appropriate representation of the solution that satisfies the required conditions
is

ϕ(y, t) =

N∑
n=0

ϕ̃(k, t) cos ky

with k = nπ. In the Fourier (k, t)-space, equation (4.7) can be rewritten in the form

θ̃t = −k tanh kt θ̃ + ϕ̃, (6.1a)

ϕ̃t = q
{

1
2
k2 g(k, t) θ̃ − (1/L+ αk2)ϕ̃+ 1

2

(̃
ϕ2
y

)}
, (6.1b)

where

θ̃(k, t) =
1

cosh kt

∫ t

0

ϕ̃(k, τ) cosh kτ dτ

and the kernel g(k, t) is given by

g(k, t) = 1 +
e−2kt − e−2k(L−t)

1− e−2kL
.

The initial conditions for this system are

ϕ̃(k, 0) = ϕ̃o(k), θ̃(k, 0) = 0. (6.2)

For a given N the system of ordinary differential equations (6.1a), (6.1b) has
been integrated with the help of the NAG routine D02EBF which uses a variable-
order, variable-step method and implements a backward differentiation formula. The
number N has been fixed following the empirical rule that N = 4kmax, where kmax is
the upper bound of the interval (5.3) that identifies the range of the unstable modes.

The quadratic term
(̃
ϕ2
y

)
has been computed using a fast Fourier transform algorithm

for the cosine transforms; it has been evaluated with 2N collocations points which is
found to lead to an arithmetically exact computation.

The results are shown in figures 4–9, where snapshots of the flame shape are
shown at constant time intervals. Except where otherwise indicated, the heat release
parameter has been chosen as q = 0.5 and the length of the tube was taken as L = 10.
As indicated in the captions an amplification factor has often been used in order to
improve visualization.

6.1. Diffusional–thermal effects

The Markstein parameter α is the only mixture-sensitive parameter in our model. As
noted earlier α depends on the Lewis number and hence on the mixture’s composition.
Starting with random but identical initial conditions the three figures 4 (a)–(c) illustrate
the development of the flame front for three different values of α. For α = 0.15,
the planar flame front is stable according to the linear theory; see equation (5.2).
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Figure 4. The development of the flame front from random initial conditions, for (a) α = 0.15; (b)
α = 0.08; (c) α = 0.01. The distortions from a flat flame have been enhanced by a factor of 5 to
improve visualization.
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Figure 5. The development of the flame front from random initial conditions, different from those
used in figure 4; for (a) α = 0.01; (b) α = 0.04. The distortions from a flat flame have been enhanced
by a factor of 5 to improve visualization.
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Figure 6. The development of the flame front from initial conditions corresponding to a pair of
pulses located at (a) y = ±1/2; (b) y = ±3/4. In both cases α = 0.04. The distortions from a flat
flame have been enhanced by a factor of 5.



Premixed flames in closed tubes 345

1

0

–1

1

0

–1

(a)

1

0

–1

1

0

–1

(b)

Figure 7. The vorticity distribution along the sheet x = t during the development of (a) a cellular
flame; (b) a tulip flame. Calculated with α = 0.04. The distortions from a flat flame here have been
enhanced by a factor of 10.

Figure 4 (a) confirms this result; after an initial transient the flame flattens out and
a nearly planar front propagates towards the end of the tube. For a value α = 0.08
near the instability threshold the flame beyond the initial transient does not flatten
out; it remains slightly curved until it reaches the end of the tube (see figure 4b). The
pattern that evolves once the planar front becomes unstable depends of course on
the number of excited modes. We recall that according to the linear theory these are
restricted to wavenumbers in the range (5.3). Figure 4 (c), plotted for α = 0.01, shows
that the small cells that develop during the initial phase of propagation disappear
and a two-cell structure emerges towards the end of the tube. This structure seems
to be the near-equilibrium solution, as is evident from the fact that the flame retains
its shape during the last phase of propagation and propagates at a nearly constant
speed.

6.2. Initial conditions

The development of the flame depends strongly on the initial data. Figure 5 (a) shows
the development of the flame for the same value of α as used in figure 4 (c), but with
different random initial conditions. One finds that the flame remains in a transient
state until it reaches the end of the tube. The small cells are continuously shrinking
while the large cells are increasing in size. A two-cell structure might have developed
if the tube were longer. Figure 5 (b) shows that for a somewhat larger value of α,
α = 0.04, and with the same initial conditions as used in figure 5 (a) a tulip flame
emerges towards the end of the tube. We were unable to reproduce the tulip shape
with the initial data of figure 4.
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To further examine the sensitivity to the initial conditions we have chosen an initial
disturbance that corresponds to a pair of pulses located symmetrically with respect
to axis of the tube, but at different positions with respect to the walls. In figure 6 (a),
for example, the pulses are located halfway between the centreline and the walls, i.e.
at y = ±1/2; in figure 6(b) the pulses are located closer to the walls, or specifically
at y = ±3/4. In the former, the equilibrium state appears to be a two-cell structure
while in the latter it is a tulip flame.

6.3. Vorticity production

The development of the flame beyond the initial transient has been redrawn in figure 7
along with the vorticity distribution at the unperturbed position of the flame, i.e. at
x = t, for the same parameters and initial conditions as those used in figure 6. Here,
an amplification factor of 10 has been used.

As pointed out earlier the curved flame is equivalent to a flat vortex sheet of
non-uniform strength located at x = t. According to (4.5), the strength of the vortex
sheet is given by

$ =
∂2ϕ

∂t∂y

∣∣∣∣
t=x

.

The non-uniform distribution of vorticity along the sheet induces a velocity field
which, according to the Biot–Savart law, tends to advect the flame in the axial
direction in one or the other direction. In the first case, shown in figure 7 (a), two
pairs of vortices are created, one on each side of the centreline. The sense of the
circulation, shown in the figure, is such that the flame is advected upstream near the
walls and along the centerline. The relatively stronger circulation near the walls is
responsible for the cellular pattern that develops towards the end of the tube. The
nearly uniform vorticity distribution at the end of the tube is additional evidence
that the flame has nearly reached an equilibrium state. In the second case, shown in
figure 7 (b), only one pair of vortices is formed. The sense of circulation is such as
to advect the flame into a shape whereby its centre part becomes increasingly more
convex with respect to the burned gases. The larger magnitude of the vorticity is
responsible for the sharp indentation observed at the centre of the tube in contrast
with that seen in figure 7 (a).

6.4. Tulip flames

As described in the introduction, experimental observations reveal that flames prop-
agating in closed tubes often acquires a tulip shape. In a typical experiment, the
combustible mixture is ignited at a point at one end of the tube. During the first
phase of the burning a spherical flame, centred around the ignition point, propagates
outward. It then gradually develops into a hemisphere that continues to grow into
an elongated finger. Once the flame makes contact with the walls, it flattens out and
a tulip shape develops thereafter. In order to simulate the experimental conditions
we consider, as initial condition, an elongated finger-like flame shape. The results
are shown in figure 8. In the short tube, L = 5, the flame flattens out and remains
flat until it reaches the end of the tube. In a moderate tube, L = 10, the flame first
flattens out but as it propagates downstream its centre part becomes increasingly
more convex toward the burned gases. In a yet longer tube, L = 20, the tulip flame
clearly forms before the mixture burns completely. The elongated finger-like flame is
clearly responsible for the magnitude and sense of circulation which, as pointed out
earlier, induces a flow field that forces the formation of the tulip flame. Our results
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Figure 8. The development of a tulip flame in tubes of length (a) L = 5, (b) L = 10, (c) L = 20;
calculated for α = 0.06. The distortions from a flat flame have been enhanced by a factor of 5.

are in agreement with experimental records which indicate that, when a tulip flame
emerges, it forms only after the flame has travelled half of the length of the tube and
that it does not form in short tubes.

6.5. Heat release

In figure 9 we illustrate the dependence of the flame development towards a tulip
shape on the heat release parameter q. No amplification factor has been used in this
case so that the figure shows the actual size of the flame. The snapshots are presented
at intervals of one unit of time so that the relative propagation velocity could be
easily detected by observation. The flame remains nearly planar when q is small, and
its propagation speed is much slower than the propagation of the tulip flame. Thus,
an increase in the heat release causes enhancement in the motion of the distorted
flame. Consequently the total propagation time is shortened. Since, as pointed out
earlier, the final pressure Pe is independent of the flame dynamics, there will be a
sharp increase in pressure during the last stages of propagation. A boundary layer
analysis is thus required to properly describe the events occurring when the flame
nears the end of the tube.

7. Long tubes
For very long tubes, L → ∞, the kernel g(k, t) ∼ 1, and the system (6.1a), (6.1b)

simplifies to

qθ̃s = −|k|θ̃ + ϕ̃, (7.1a)

ϕ̃s = 1
2
k2 θ̃ − αk2ϕ̃+ 1

2

(̃
ϕ2
y

)
, (7.1b)

in terms of the slow time s = qt.
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Figure 9. The dependence of the flame development on the heat release parameter (a) q = 0.25, (b)
q = 0.5, (c) q = 0.75; calculated for α = 0.04. The figure displays the actual distortion of the flame;
no amplification factor has been used.

All memory effects are now confined to s ≈ 0. Ignoring these effects yields |k|θ̃ = ϕ̃
which, when substituted into (7.1b), gives

ϕ̃s = 1
2
|k| ϕ̃− αk2ϕ̃+ 1

2

(̃
ϕ2
y

)
.

The first term on the right-hand side is the Darrieus–Landau growth rate (the
hydrodynamic instability). The second term is the influence of diffusion which is
stabilizing or destabilizing depending on whether α is positive or negative, respectively.
In real space, one obtains the evolution equation

ϕs = αϕyy + 1
2
ϕ2
y + 1

2
I(ϕ) (7.2)

with I given by

I(ϕ) =
1

2π

∫ ∞
−∞

∫ ∞
−∞
|k| ϕ(η, s) eik(y−η) dk dη.

This equation has been previously derived by Sivashinsky (1977) for freely propagating
flames. If memory effects are now retained, one finds from (7.1a) that

θ̃ =

[
θ̃(0) +

1

q

∫ s

0

e|k|σ/qϕ̃(k, σ)dσ

]
e−s|k|/q. (7.3)

Substituting into (7.1b) after differentiating the latter with repect to s yields

q(ϕs − αϕyy − 1
2
ϕ2
y)s +I(ϕs − αϕyy − 1

2
ϕ2
y − 1

2
I(ϕ)) = 0. (7.4)

Equation (7.2) has been used successfully to describe the wrinkling and the forma-
tion of cusps that are often observed on large-scale freely propagating flame fronts
and are a manifestation of the hydrodynamic instability (Michelson & Sivashinsky,
1977). This equation, however, seems unable to describe the inversion of tulip flames.
As a remedy Dold & Joulin (1995) wrote down an equation similar to (7.4) but with
the first bracket containing only the term ϕss. This was obtained by synthesizing
Sivashinsky’s equation (7.2) with the linear dispersion relation of Darrieus (1938) and
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Landau (1944). Our derivation shows that two other terms, ϕyys and (ϕ2
y)s are of equal

magnitude and should not be neglected in a self-consistent treatment. The origin of
the nonlinear term in this equation is in the normal velocity of the front Vf . Within
the present approximation it is easy to verify that

Vf ∼ q(x̄f)s + q2(ϕs − 1
2
ϕ2
y)

so that both the time derivative and the nonlinear terms are of the same magnitude.
When differentiated with respect to time, they will retain the same magnitude so
that both are expected to appear together on the left-hand side of equation (7.4).
Numerical solutions of (7.4) that illucidate the peculiar dynamics of premixed flames
in very long tubes will be reported in a future study.
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Science Foundation and of the microgravity combustion program under NASA
sponsorship.
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